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I. INTRODUCTION

This report provides an overview of our system used to
complete the HILTT SLAM Challenge. We used a combination
of VILENS odometry with a loop closure module to estimate
the sensor pose in real time. Different VILENS configurations
of sensors and modules have been used extensively on legged
robots [1], wheeled vehicles, drones, and handheld devices [2],
[3] (see Fig. 2) at the Oxford Robotics Institute, University of
Oxford.

II. METHOD

The main module used for estimation is the VILENS
odometry algorithm [2], [1], which computes a high frequency
state estimate based on lidar, camera, and IMU measurements.
Because VILENS does not perform loop closures, a separate
SLAM module based on [4] produces low frequency esti-
mates which are used for global pose graph optimization.
The motion-corrected lidar scans and the odometry estimate
from VILENS are the inputs to the SLAM system. A system
overview of our method is shown in Figure 3.

III. VILENS ODOMETRY MODULE

VILENS is a multi-sensor fusion algorithm which uses a
sliding window optimization based on factor-graphs, as shown
in Fig. 1. Its modular design allows for different sensor inputs
to be easily added and removed depending on the application.
As detailed in Section V, for the challenge we have fused prior
(black), preintegrated IMU (orange), stereo visual tracking
(yellow) and lidar odometry (magenta) factors.
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Fig. 1. Sliding-window factor graph structure, showing prior, visual, ICP, and
preintegrated IMU factors.

IV. Loorp CLOSURE MODULE

We use the SLAM module with lidar loop closure verifica-
tion described in [4] to perform global pose optimization with
the iISAM2 solver [5]. The module uses the motion-corrected
lidar scans from VILENS to construct a map which is used to
propose geometric loop closures. These are incorporated in a
global pose graph optimization and output at 1 Hz.
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Fig. 2. The VILENS algorithm has been extensively tested on a Handheld
Alphasense Ouster device (HALO) at the Oxford Robotics Institute [3]. All
measurements are processed by the on-board Intel NUC PC.
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Fig. 3. System diagram composed of high frequency odometry and SLAM.

V. SENSOR MODALITIES

This section will describe the specific settings and sensor
inputs used for our submission to the HILTI SLAM Challenge.

Our system is flexible and can be easily configured to use
different modalities. Given the moderate complexity level of
the HILTI SLAM Challenge dataset, we were able to use
our baseline configuration to produce accurate estimation.
Specifically, we used the method described in Section II to
combine inputs from the Alphasense front stereo pair (cam0,
caml), the ADIS IMU (which is the highest quality among the
IMUs available), and the Ouster Lidar. Due to missing data
from both the Alphasense IMU and the ADIS IMU, for some
sequences of the dataset the Ouster IMU was used instead.
The LIVOX lidar was not used.

VILENS supports other advanced features such as lidar
point cloud feature tracking, multi-camera odometry, and kine-
matics which were not used for the HILTI datasets (see [2],
[3] for more details). Note that we used the same parameters
throughout all sequences.

VI. PERFORMANCE

The odometry system outputs the optimized state estimate
from the factor-graph at camera keyframe frequency (10Hz



Mean APE RMSE

\
Dataset | SVO2  GraphSLAM  VILENS + SLAM
Basement_1 | 0.815 0.279 0.054
Basement_4 | 2.609 0.366 0.050
Campus_2 | 8.948 0.353 0.122
Construction_Site_2 | 2.986 0.741 0.124
Lab_Survey_2 ‘ 0.074 0.053 0.017
uzh_tracking_area_run2 | 1.927 0.350 0.184
TABLE I

PERFORMANCE COMPARISON

in this dataset), while a forward-propagated state is produced
at IMU frequency (819.2 Hz for the ADIS IMU). The SLAM
system detects loop closures and adds a new pose to the global
optimization at 1 Hz.

The rosbags were processed in real-time (through ROS) so
the total processing time was the same as the duration of
the rosbags themselves. The system ran on a consumer-grade
laptop with an Intel Core 17-9850H CPU (2.60GHz) and 16GB
memory. No GPU was used for the evaluation.

For the purpose of the HILTI Challenge, a further refinement
step was performed in post processing by fusing the VILENS
output and the SLAM output in a full batch optimization
fashion. This yield high frequency estimates while retaining
the loop closure capability. Note that this refinement step did
not involve any measurement processing, but just the fusion
of the two outputs.

In table I, we present the comparisons between the provided
results from SVO2 [6], GraphSLAM [7] and our VILENS with

loop closure. Note the table only contains half of the HILTI
dataset with provided ground truth. Because these trajectories
contain a limited number of loop closures, the results from
VILENS without loop closure were identical.

VII. CONCLUSION

Our submission, which is based on VILENS and a loop
closure module provides accurate estimation across the entire
HILTI SLAM Challenge dataset. Our evaluation on the results
with ground truth provided shows a substantial reduction in
ATE error compared to the reference trajectories provided.
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